- 1. Determine the rotational inertia of a wagon wheel made of: a 5.0kg cast iron band, wrapped around a 3.0kg wooden rim with a 1.0m outer diameter and 0.95m inner diameter, connected to 12 wooden spokes that are each 0.39m long and 0.20kg stick out radially from a 2.0kg brass cylinder that is 0.17m in diameter.
- 2. What percentage does the rotational inertia of the wheel increase if a 0.50kg "road apple" becomes stuck to the rim?

$$I_{hoop} = m(^2 = (5)(0.5)^2 = 1.25$$

$$I_{rim} = \frac{1}{2}m(r_1^2 + r_2^2) = \frac{1}{2}(3)(0.475^2 + 0.5^2)$$

$$= 0.7134$$

$$I_{spaces} = 12 \left[\frac{1}{12} ML^2 + Mh^2 \right] = 12 \left[\frac{1}{12} (0.2) (3.9)^2 + 0.2 (0.28)^2 \right]$$

2. add 0.5 kg at rim % increuse in I =?

$$I = mr^2$$
 (particle)
= $(0.5)(0.5)^2 = 0.125$

$$I = I_{hoop} + I_{rim} + I_{spokes} + I_{hub}$$

$$= mR^{2} + \frac{1}{2}m(R_{i}^{2}+R_{2}^{2}) + 24\left[\frac{1}{12}mL^{2}+mh^{2}\right] + \frac{1}{2}mI$$

$$= (5)(0.5)^{2} + \frac{1}{2}(3)(0.475^{2}+0.5^{2})$$

$$+ 24\left[\frac{1}{12}(0.2)(.39)^{2} + (.2)(.28)^{2}\right] + \frac{1}{2}(2)(.28)^{2}$$

$$= (.25)(0.5)^{2} + \frac{1}{2}(3)(0.475^{2}+0.5^{2})$$

= 1.25 + 0.7134 + 0.43716 + 0.007225

add "road apple"
$$I_{RA} = mr^2 = (0.5)(0.5)^2 = 0.125 \, \text{kgm}^2$$

$$\frac{7}{6}$$
 increase = $\frac{\Delta I}{I}$ ×100
= $\frac{.125}{2.41}$ ×100 = $\frac{5.2\%}{5.2\%}$